Introducing Gradio 5.0
Read MoreIntroducing Gradio 5.0
Read MoreThe Gradio Chatbot can natively display intermediate thoughts and tool usage. This makes it perfect for creating UIs for LLM agents. This guide will show you how.
In addition to the content
and role
keys, the messages dictionary accepts a metadata
key. At present, the metadata
key accepts a dictionary with a single key called title
.
If you specify a title
for the message, it will be displayed in a collapsible box.
Here is an example, were we display the agent's thought to use a weather API tool to answer the user query.
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type="messages",
value=[{"role": "user", "content": "What is the weather in San Francisco?"},
{"role": "assistant", "content": "I need to use the weather API tool",
"metadata": {"title": "🧠 Thinking"}}]
)
We'll create a Gradio application simple agent that has access to a text-to-image tool.
Tip: Make sure you read the transformers agent [documentation](https://huggingface.co/docs/transformers/en/agents) first
We'll start by importing the necessary classes from transformers and gradio.
import gradio as gr
from gradio import ChatMessage
from transformers import Tool, ReactCodeAgent # type: ignore
from transformers.agents import stream_to_gradio, HfApiEngine # type: ignore
# Import tool from Hub
image_generation_tool = Tool.from_space(
space_id="black-forest-labs/FLUX.1-schnell",
name="image_generator",
description="Generates an image following your prompt. Returns a PIL Image.",
api_name="/infer",
)
llm_engine = HfApiEngine("Qwen/Qwen2.5-Coder-32B-Instruct")
# Initialize the agent with both tools and engine
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
Then we'll build the UI:
def interact_with_agent(prompt, history):
messages = []
yield messages
for msg in stream_to_gradio(agent, prompt):
messages.append(asdict(msg))
yield messages
yield messages
demo = gr.ChatInterface(
interact_with_agent,
chatbot= gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
),
),
examples=[
["Generate an image of an astronaut riding an alligator"],
["I am writing a children's book for my daughter. Can you help me with some illustrations?"],
],
type="messages",
)
You can see the full demo code here.
We'll create a UI for langchain agent that has access to a search engine.
We'll begin with imports and setting up the langchain agent. Note that you'll need an .env file with the following environment variables set -
SERPAPI_API_KEY=
HF_TOKEN=
OPENAI_API_KEY=
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_tools_agent, load_tools
from langchain_openai import ChatOpenAI
from gradio import ChatMessage
import gradio as gr
from dotenv import load_dotenv
load_dotenv()
model = ChatOpenAI(temperature=0, streaming=True)
tools = load_tools(["serpapi"])
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-tools-agent")
# print(prompt.messages) -- to see the prompt
agent = create_openai_tools_agent(
model.with_config({"tags": ["agent_llm"]}), tools, prompt
)
agent_executor = AgentExecutor(agent=agent, tools=tools).with_config(
{"run_name": "Agent"}
)
Then we'll create the Gradio UI
async def interact_with_langchain_agent(prompt, messages):
messages.append(ChatMessage(role="user", content=prompt))
yield messages
async for chunk in agent_executor.astream(
{"input": prompt}
):
if "steps" in chunk:
for step in chunk["steps"]:
messages.append(ChatMessage(role="assistant", content=step.action.log,
metadata={"title": f"🛠️ Used tool {step.action.tool}"}))
yield messages
if "output" in chunk:
messages.append(ChatMessage(role="assistant", content=chunk["output"]))
yield messages
with gr.Blocks() as demo:
gr.Markdown("# Chat with a LangChain Agent 🦜⛓️ and see its thoughts 💭")
chatbot = gr.Chatbot(
type="messages",
label="Agent",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/141/parrot_1f99c.png",
),
)
input = gr.Textbox(lines=1, label="Chat Message")
input.submit(interact_with_langchain_agent, [input_2, chatbot_2], [chatbot_2])
demo.launch()
That's it! See our finished langchain demo here.